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The short-range interaction between any two molecular fragments can be split into coulombic 
and penetration components, the last part being dominant in neutral systems. A simple theoretical 
model is developed to describe the penetration part of the short-range interaction between two localized 
electron pairs. The main body of the interaction is seen to take place through the overlap arising 
between nonorthogonal electron groups. For closed-shell fragments the interaction can be visualized 
in terms of a distortion of the electron density resulting in a decrease of charge in the overlap region 
and in an increase of charge in the region of the component groups. 

Die Wechselwirkung kurzer Reichweiten zwischen zwei MolekiJlteilen kann in Coulomb- und 
Durchdringungsanteile aufgeteilt werden, von denen der letztere in neutralen Systemen dominiert. 
Ein einfaches Modell wird entwickelt, das den gesamten Durchdringungsanteil der Wechselwirkung 
zweier lokalisierter Elektronenpaare kurzer Reichweite beschreibt. Der Hauptanteil der Wechsel- 
wirkung kommt durch die Uberlappung zwischen nichtorthogonalen Elektronengruppen zustande. 
Ftir Bruchstiicke mit abgeschlossenen Schalen kann man sich die Wechselwirkung mit Hilfe einer 
Verlagerung der Elektronendichte vorstellen, die zu einer Verminderung der Ladung in der Ober- 
lappungsregion und einer Vermehrung der Ladung im Gebiet der beiden Gruppen f'tihrt. 

L'interaction/t courte distance entre deux fragments mol6culaires quelconques peut ~tre decompos6e 
darts une composante coulombienne et une composante p6n6trative, cette derni+re 6rant dominante 
darts le cas de syst~mes neutres. Un mod61e th6orique simple a 6t6 develop6 pour d6crire la composante 
p6n6trative de l'interaction /l courte distance entre deux paires localis6es d'61ectrons. La partie la 
plus importante de l'interaction a lieu via le recouvrement entre groupes nonorthogonales d'~lectrons. 
Pour des fragments mol6culaires correspondants /t des couches compt6tes l'interaction peut ~tre 
visualis6e dans une distortion de la densit6 electronique aboutissante ~ une diminution de charge 
darts la r6gion de recouvrement et/~ une augmentation de charge darts la r6gion des groupes composants. 

Introduction 

The theory of separated electron pairs [-1-3] and  its general isat ions [-4] 
suggests itself as a powerful  tool  in describing the short-range forces existing 
between different molecules or different parts  of the same polyatomic  molecule. 
Indeed while it shares with pe r tu rba t ion  theory the attractive feature of al lowing 
a par t i t ion  of the molecular  energy into terms referring to individual  parts and  
interact ions between them, in its SCF formula t ion  the theory has the further 
advantage  that  it is possible to account  for polar izat ion forces even wi thout  
the explicit i n t roduc t ion  of excited functions.  The relaxat ion of the strong ortho- 
gonal i ty  cons t ra in t  in  the case of two general  interact ing electron groups a l though 
yielding a bit of tedious algebra [5] allows, at the same time, the separat ion of 
the in teract ion into terms with a direct physical in terpre ta t ion  [6]. 
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In the paper just referred to [6] it has been shown that the short-range inter- 
action between any two molecular fragments can be split into coulombic and 
penetration components, the last part being dominant in neutral systems. 

Purpose of the present paper is to develop a semiempirical approach within 
the frame of the general theory in order to grasp the main features of the penetration 
part of the short-range interaction for the simple model of two separated electron 
pairs which are in weak interaction with each other. In view of the rather good 
results obtained in an accurate numerical calculation on the Hz-H2 system [6], 
each electron pair will be approximately described in terms of one-electron 
functions (group orbitals) localized in given regions of space and not orthogonal 
to each other. The energy of the composite system is first analyzed by a perturbation 
method which allows to separate a zero-order term describing the energy of the 
individual components and a first-order term which describes the interaction 
between the two parts. The first approximation in which the zero-order orbitals 
resulting from the eigenvalue problem for separate groups are used to compute 
the cross terms representing the interaction between A and B is then improved 
by admitting the mutual polarization of the two groups in a self-consistent way. 
The actual eigenvectors which describe mutually polarized orbitals are found as 
approximate solutions to a system of two coupled eigenvalue equations each 
involving an effective one-electron Hamiltonian which depends explicity on the 
density of the other group, 

The analysis of the resulting interaction energy shows that overlap forces 
play a dominant role in the short-range region, both attractive and repulsive 
contributions being strongly dependent on the relative orientation of the interacting 
partners, 

1. Outline of the General Theory 

Following Longuet-Higgins [7] let us denote by #, i the nuclei and electrons 
belonging to system A, and by v,j the nuclei and electrons belonging to system B. 
If/~n,/~B are the many-electron Hamiltonians for the separate systems, the 
coulombic interaction between A and B will be 

V =  - Z Zl~r;J 1 -  2 Zv~'~il "I- ~ r~ 1 -~ 2 Z#Zv?'. u-vl , 
#,j v,~ z,j ,u,v 

(1.1) 

where atomic units have been used and Zu, Zv are the nuclear charges. The 
molecular Hamiltonian can be written as a sum of the unperturbed Hamiltonian 
/4o, and the perturbation V 

0=~0o + v=~O~ +~0~ + v. (1.2) 

If ~a,, ~Bb are suitable many-electron approximations to the wave functions 
describing the A-electron group in state a and the B-group in state b, the electronic 
states of the non-interacting composite system will be given in the product form [7] 

~ = ~aa~Bb. (1.3) 
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Denoting the ground state with the subscript 0, we get that q~0 = t~A°~)B° is 
an approximate eigenvector and E0 = EA+ E B an upper bound in the usual 
sense of variation theory to the lowest energy eigenvalue appearing in the un- 
perturbed Schroedinger equation 

/4o~ o = E0~ o . (1.4) 

When the two electron groups begin to interpenetrate exchange must be 
allowed for, and Eq. (1.3) must be replaced by the antisymmetrized product 

T~ = M~d  ~ ,  (1.5) 

M~ being a normalization factor for configuration x=(Aa,  Bb), and d the 
antisymmetrizer which exchange electrons between different groups. We then 
seek for an approximate solution to the complete Schroedinger equation 

/ 4 T = E T  (1.6) 

in the form of the interconfigurational wave function 

T =  T o+ • T~C,,. (1.7) 
~(¢0) 

By exploiting a density matrix formalism it can be shown [8] that, up to 
second-order in the interaction Hamiltonian, the energy is given by the perturbation 
series 

E =  (TI / - )T)  _E(O)+E(:)+. . .  (1.8) 
<~'IT> 

where 
E (°) = Hoo = ( Tol/~ To> (1.9) 

is the energy in the one-configuration approximation, and 

E(2) --  - E IH~o- Ho0Sxo[ 2 (1.10) 
~(*o) H~ - Hoo 

is a second-order correction [9J arising from the interconfigurational mixing 
of Eq. (1.7). In the last equation, 

is the matrix element of the Hamiltonian between states T~ and T~,, and 

S~, = (T~I T~,) (1.12) 

the nonorthogonality integral between the two states. The problem of evaluating 
the general matrix elements has been solved by McWeeny [5, 10] in the general 
case of two nonorthogonal electron groups through an expansion of the one- 
and two-electron density matrices for the composite system in terms of those of 
its constituent parts. 
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In the shor t - range  region of in t e rmolecu la r  forces the d o m i n a n t  con t r ibu t ion  
arises f rom the one-conf igura t ion  a p p r o x i m a t i o n  t, E ~°), which embodies  the 
f i rs t -order  in te rac t ion  energy:  

A E  = E - E o  "~ A E  m . (1.13) 

It  has been shown by us elsewhere [6] tha t  the  one-conf igura t ion  in terac t ion  
energy can be spli t  into cou lombic  and pene t r a t i on  c ompone n t s  as follows 

• ~(I) = a E (1) + A/Spn A E (1) ~, ~b (1.14) 

Here  A ~(1 ) ~¢b descr ibes  the cou lombic  in te rac t ion  between the nuclei  and  the 
s tat ic  e lec t ron  densi t ies  on  bo th  A and  B; A E~p~ ) descr ibes  the  add i t i ona l  inter-  
ac t ion  which arises f rom the p e r t u r b a t i o n  of  the charge c louds  when they begin 
to in terpenet ra te .  The  largest  t e rms  in A ~  ° )  arise f rom the d i s to r t ion  of  the - -pn  

elect ron dens i ty  p r imar i l y  due  to  p e n e t r a t i o n  e f f e c t s  z.  

F o r  neut ra l  systems (e.g. s a tu ra t ed  hyd roc a rbons )  the con t r i bu t ion  ar is ing 
f rom a~¢l) ~=ob is expected to be smal ler  than  - - m  zl Lpn a l though  not  negligible 3. In  the 
remain ing  Sect ions we shall  endeavour  of  f inding a first a p p r o x i m a t i o n  to the 
pene t ra t ion  energy in te rms of  a semi-empir ica l  one-e lec t ron  mode l  which will 
p rove  useful for prac t ica l  appl ica t ions .  

2. Electron Density of the Composite System 

Local ized  e lec t ron pa i rs  A and  B will be a p p r o x i m a t e l y  descr ibed  in terms 
of  one-e lec t ron  orb i ta l s  

(A) (B) 

,~(1) c~, (2.~) •A( I )=  ~ ¢~(1) c A ,  4~(1) = £ B B 
# v 

where the s u m m a t i o n s  are  over  all a tomic  hybr ids  ¢~ be longing  to A in ~b a, 
and  over  all hybr ids  ¢~ be longing  to  B in ~B. In o rde r  to  s implify our  n o t a t i o n  
hencefor th  we shall  consis tent ly  assume #, # '  as runn ing  indices of  a tomic  orb i ta l s  
(AO's)  be longing  to  A, and  v, v' as runn ing  indices of  A O ' s  be longing  to B. ~ a  

An estimate of A E  (2) in the case of nonorthogonal group functions can be made for the short- 
range interaction between two H 2 molecules from the data quoted in Refs. [6] and [11]. The simple 
one-determinant wave function of nonorthogonal localized bond-orbitals for D/R o = 2.0 and 0 = 0 ° 
gives A E m = 0.0703 a.u. When intramolecular correlation is admitted by mixing each bonding orbital 
with its corresponding antibonding partner a lowering of -0.0028 a.u. is obtained for the interaction 
energy. A further lowering of -0.0014 a.u. results if intermolecular correlation and delocalization are 
allowed for through the full interconfigurational wave function [11]. The total lowering of the short- 
range interaction due to interconfigurational mixing amounts to -0.0042a.u. which gives for 
IA E(2)I/IA Eml an estimate of about 6 %. 

2 We would like to stress that we use the term penetration energy for describing the interaction 
energy associated with electron exchange between different electron groups (see Eqs. (3-18) and 
(3-30) in Ref. [-6]). Confusion with the penetration part of the Coulombic energy as defined by Van 
Duijneveldt and Murrell [15] and with the penetration integral entering the Goeppert-Mayer-Sklar 
approximation should be carefully avoided. 

3 Anestimate•fthere•ativeimp•rtance•fthe••u••mbi•withrespe•tt•thepenetrati•nintera•ti•n 
for a neutral system can be gained from Ref. [6] (Table IV) for the H 2 - H  2 system. At D/R o = 2.0 
the ratio IAEcb]/IAEvn r is about 21% irrespective of the relative orientation of the two molecules. 
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and ~B are normalized to unity but not orthogonal to each other: 

(cA I cA) = ~ C*,S~,,~,C. = 1, (2.2) 
/ t , # '  

(~A I ~B) = ~ C*S.~Cv = S,  (2.3) 
/t, V 

S... and S.~ being elements of the overlap matrix over the hybrid basis 

S... = (q~., I ¢ . ) ,  (2.4) 

s.~ = ( ¢ . 1 ¢ ~ ) .  (2.5) 

The simplest pair functions describing the singlet ground state for each electron 
pair are: 

4r~(1, 2)= 2-}det  [~A(1)a(1) ~A(2)fl(2)], (2.6) 

~B(3, 4) = 2-  =*det [4}B(3) a(3) ~B(4) fl(4)]. (2.7) 

When electron exchange is allowed for, the correct wave function for the 
singlet (S = 0, Ms = 0) ground state of the composite system A + B has to be 
written as the antisymmetrized product 

g* = M d  [~bA(1, 2) ~B(3, 4)]. (2.8) 

T may be alternatively written as a single determinant of nonorthogonal localized 
orbitals which, when properly normalized, is 

T = (4 !)-} (1 - $2) - 1 det [~A(1) C~(1) ~ ( 2 )  fl(2) ~B(3) e(3) ~B(4)//(4)]. (2.9) 

These 7* expressions are, of course, entirely equivalent, Eq. (2.8) emphasizing 
the localization of the two electron pairs, and Eq. (2.9) the independent particle 
model of our approximation. Although exceedingly simple, such a one-de- 
terminant wave function constructed from SCF bond orbitals was found in the 
H2-H 2 problem to give numerical results within 5 to 10 % of the reference value 
[11] for the interaction, and within 3 to 5% for the energy difference between 
different relative orientations of the two molecules [6]. 

The one-electron density matrix [9b] for the composits system 4 

P(1; 1 ' )=4~ ~II(1SI,X2, Xa, X4) ~tl*(l'Sl, X2, xa, x4)dsldx2dxadx4, (2.10) 

simply reduces to 

P(1; 1') = 2(1 - S2) -1  [ o A ( 1 )  oA*(I') + oB(1) Om(l') 
(2.11) - S(~A(1) 4}B*(1 ') + ~B(1) ~h*(l'))] .  

The diagonal element of P(1 ; l')7is the electron density function 

P(1; 1) = 2(1 - $2) - * [[~A(1)[2 + [~B(1)[2 -- s(~A(1) ~B*(1) + ~'(1) ~A*(1))], (2.12) 

which by integration over the whole electron space yields the total electronic 
charge carried by the composite system A + B 

SP(1; 1) dv 1 = 4. (2.13) 

4 The integration is over the spin-space coordinates of all electrons but one, for which the inte- 
gration is carried out only over the spin coordinate s 1 . 



272 V. Magnasco: 

The coefficients of each individual density in (2.12) are the elements of a 
charge and bond-order matrix over the localized orbitals: 

~A = 2(1 - $2) -1 (2.14) 

the charge on 4~A; 
pAB = _ 2S(1 - S 2)- 1 (2.15) 

the bond-order between ~a and ~B. According to (2.1) we may as well express 
the density in the hybrid basis as 

e(1; 1)= E fi.u.~bu(1) ~b*,(1)+ E/5~¢~b~(1) ~b*.(1) 
II, #" V, V' 

+ E (/Su,q~u(1) ~b*(1) +/~u¢~(1) ~b*(1)), 
(2.16) 

where the coefficients are now elements of the charge and bond-order matrix 
over the hybrids" 

~ ~ A  * Puu-q CuCu (2.17) 
the charge on orbitar ~b.; 

~##, - -  ~A * - q  C.C u, (2.18) 

the bond-order between q~, and q~,, in A; 

fi.~ -P- =AB %%~ "*  (2.19) 

the bond-order between orbital ~bu belonging to A and orbital ~b~ belonging 
to B. When expressed in terms of ordinary atomic orbitals {)~}, to which the 
hybrids are related through 

q~ = ~ zaAz~, (2.20) 
2 

Az. being the elements of a block-diagonal matrix, the density becomes 

V(1; 1)= ~ ga(1)Pa,,Z*(1), (2.21) 

P~ = ~ AzuPu~A* ~ . (2.22) 

3. One-Electron Hamiltonian and Zero-Order Approximation to the Energy 

Let us introduce at this point an unspecified one-electron Hamiltonian H(1), 
which will be assumed Hermitean but not dependent in an explicit way on the 
molecular environment (e.g. a Hiickel-type Hamiltonian, although reference to 
Hiickel theory is unnecessary here). 

The diagonal and off-diagonal elements of H(1), namely 

H A = <(]~A ] H ( ~ A >  , H B : < ( ~ B [ H ~ B )  , (3.1)  

H A B =  <g)A [Hq)B>, H BA = ( ~ B I H ~ A )  = H AB* , (3.2) 
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may be expressed in terms of elementary integrals over the hybrids 

Huu, = (~but Hq~,,) ,  H~v, = (~bvln4,~,), (3.3) 

H.~= <q~. IH4~> = H J  z . (3.4) 

The energy of the composite system A + B, which within our approximation 
must be understood to embody both electronic and nuclear contributions, is 
written as the integral 

E = ~n(1) P(1; 1) dye,  (3.5) 

and ultimately breaks into 

In this expression 

(3.6) 

~A = ~AHA ' ~B = t]BH B (3.7) 

are the energies of distorted nonorthogonal groups, and 

~AB = pABHBA ' ~BA =/~BAHAB (3.8) 

are those parts of the interaction which arise from the cross-terms in the Hamil- 
tonian. Using the identity 

(1 - $ 2 )  - 1  - 1 + $ 2 ( 1  - $ 2 )  - 1  , (3 .9 )  

we are allowed to write 

~A = q~ + qe~, (3.10) 

qo A = 2, qexA = 2S2(1 -- $2) -1 = --pASsBA , (3.11) 

q~ being the charge in the undistorted A-group, and qo~ the extra-charge on A 
due to the distortion of the density arising from nonorthogonality. The interaction 
terms embodied in /~A and /~B because diagonal elements of the Hamiltonian 
are weighted with charges which include overlap cross-terms between the two 
groups, are then readily separated as 

~ A  - -  iE?A A_ ltTAB /~B = E ~  + E~xBA (3.12) 
~'~ - -  ~ 0  T ~ e x  , 

E~d = q~H A , (3.13) 

Ecax B = --/3 As S BAH A . (3.14) 

When Eq. (3.12) is introduced into Eq. (3.6), the energy may be written as 

E = Eo + d E  (1) , (3.15) 

where Eo is a zero-order term giving the energy of separate groups 

Eo = Eo A + E~, (3.16) 

and the perturbation energy, A E m, 

d E (1) = gAB + EBA, (3.17) 

E A B  = EAx B + j ~ A B .  ( 3 . 1 8 )  



274 V. Magnasco: 

Within our assumptions (cf. Section 2) A E (1) is to be understood as a first 
approximation to the penetration part of the interaction. The distortion of the 
electron density is here visualized in terms of a shift of charge from the interbond 
region towards the space occupied by each individual fragment. If ( 1 -  $2) -1 
is expanded in powers of S 2 it is easily seen that the leading term itl A E (*~ is of 
the order of S 2. Taking S ,-, 0.1, H A ~ 10 eV, H AB ,-" 1 eV, both components of E AB 

will be of the order of a tenth of eV. 
If the zero-order problem for separate groups has been solved through 

eigenvalue equations of the type 

(H~.  u, - 2 0 S~.,,) C~,, = 0 .u, # ' =  1, 2 . . . .  (3.19) 
#' 

yielding zero-order orbitals ~A(0) ~B(0) the first approximation to the interaction 
energy in the usual sense of perturbation theory will be obtained when each 
individual component in Eq. (3.15) is understood to be computed.over the zero- 
order orbitals. This first approximation to the perturbation energy will now be 
improved by allowing the mutual "polarization" of the two groups in a self- 
consistent way. 

4. SCF-Polarization of the Component Groups 

The polarization of the component groups occurring under the interaction 
will change the eigenvectors resulting from Eq. (3.19) into functions which 
describe polarized orbitals ~A, ~B which will differ from the unpolarized orbitals 
~A¢O), ~B(o) used as a first approximation in our perturbation approach. The 
actual eigenvectors describing mutually polarized orbitals will be found as 
approximate solutions to a system of two coupled pseudo-eigenvalue equations, 
each involving an effective Hamiltonian which depends explicity on the density 
of the other group. 

The energy, Eq. (3.6), for the composite system A + B is readily written in the 
two equivalent forms s 

~B B ~A (4.1) E = E A + Ee f  f ~-- E + Eef  f 

where 
~A = ~ A  BA _t_ ~AB ~BA= (#A I/.~A~A) (4.2) 

Eef  f +Eex + 2 (¢J)A ] ~A ~A) 

is the approximate expectation value in the actual A-space of an effective one- 
electron Hamiltonian for group A 

/~A = H + (~B [ H~B)  ]~B) (~B I _ H I~ B) (~n  I -- [45 ~) (~B I H (4.3) 

which involves the density of the B-group. The integral at denominator in Eq. (4.2) 
describes the distortion of the A-space in the presence of B through the distortion 
operator 

~A = 1 -1#~)  (#B]. (4.4) 

5 EA = 2(t~A ] H ~A), where #A is the actual polarized orbital. 
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When Eq. (2.1) is taken into account, we may rewrite Eq. (4.1) in matrix 
form 

E = E A + (~B.I.~B(/~B = E B + (_~A'j'~A(_~A , (4.5) 

where ~A and 67oA are the matrix representatives of operators (4.3) and (4.4) 
in the hybrids basis which belongs to A, with elements 

flu., H. . .  + Y, * B = C~Cv,(S~vSv,u,H - S ,vH, ,~ , -  H~,S,,,,), (4.6) 
V,¥" 

Suu" = Suu ' -  Y', C,C**Su, S , ' , "  (4.7) 

We now ~look for a small change in the coefficients (~A and cgB such that the 
two equations appearing in (4.5) be simultaneously satisfied. This is tantamount 
to requiring that E be stationary against arbitrarily small independent changes 
in the two sets of coefficients, and we are thus faced with a variational problem 
for the composite system which may be formulated in terms of its constituent 
parts A and B. Straightforward application of the variation theorem yields now 
two simultaneous pseudo-eigenvalue equations of the type 

Z (Huu' - 2S,~,) C,, = 0 #, # '=  1, 2 .... (4.8) 
,u' 

from which eigenvalues 2 and eigenvectors cgA are obtained through the solution 
of the secular equation 

det ( / tu , ' -  2Suu') = 0. (4.9) 

As usual in self-consistent field (SCF) theories the pair of coupled equations 
(4.5) are conveniently solved in an iterative way, starting from the zero-order 
values for the coefficients corresponding to unperturbed separate groups, 
computing 6k R and ~R(R = A, B) for each group in turn and solving the eigenvalue 
problem (4.8). The resulting coefficients are then used to compute revised 5e R, 
~l~, and the process is repeated until self-consistency is achieved. 

5. The Short-Range Interaction Energy 

When that part of the interaction embodied in E ~°) through the SCF-eigen- 
vectors is separated from the energy Eo describing unperturbed and unpolarized 
groups, according to the equation 

E (°) = Eo + E'o+ AE  cl) (5.1) 
with 

e o = e~ + e~ (5.2) 

E~ = EA'+ Eo s, ,6 (5.3) 

6 EoA' is the difference between the self-energy of the polarized A-group and the self-energy of 
A when B is at infinity (EoA). 
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the penetration component of the short-range interaction between A and B may 
be written as 

A E ~ E~ + A E (1) . (5.4) 

Each of the terms appearing in Eq. (5.4) will now be discussed in some detail. 
We first notice that since Eo is the minimum energy for noninteracting groups 

in the usual sense of variation theory, any change in the coefficients from the 
"best" value cg o must raise the energy of the separate groups. Hence E~, which 
is the difference between the self-energies of polarized groups and the corre- 
sponding self-energies of unpolarized groups (E0), will be positive 

E; > o,  (5.5) 

representing a repulsive contribution to the interaction energy. 
The total polarization energy 7, of course, is in itself negative, because the 

component charge clouds do rearrange themselves so as to lower the total energy 
giving some additional stabilization to the composite system, but the largest 
negative contribution arising from the actual interaction between the polarized 
groups is still embodied in A E (1), in which the whole Hamiltonian is weighted 
with the perturbed density involving SCF-coefficients. The situation is much 
the same as that encountered in the interaction of two H atoms in their ground 
state, a small polarization of their charge clouds [12] yielding a lower energy 
for the whole system and a better bond energy. On the other hand, if we could 
keep the interaction frozen while mixing to a small extent orbitals having p- 
character with the is orbital in order to obtain a quantum-mechanical description 
of the polarization, the energy would increase because the lowest electronic 
energy for the free atoms occurs for the pure ls atomic orbital. Actual calculations 
on saturated hydrocarbons [13] show that for vicinal interactions E;  is at least 
two orders of magnitude smaller than A E (1) and has a rather peculiar dependence 
on the relative orientation of the two groups. 

According to Eq. (3.18) the second term in Eq. (5.4) may be written as the sum 
of two parts. In the first part, 

2S2(1 - $2) - '  (H A + HB), (5.6) 

the diagonal elements of the Hamiltonian are weighted with the extra-charge 
2S2(1 _ Sz)-1 present in each polarized group. Because 

HA= Z C*Hu,'C~', H B= ~, C*H~v, Cv, (5.7) 
# ,  ] / '  V, V' 

are expected to be negative and S < 1, this term turns out to be negative, repre- 
senting a lowering of the energy of the composite system A + B. Hence the extra- 
charge pushed onto each group acts so as to screen the interaction, smoothing 
repulsion wherever stronger. In the second part, 

--  2S(1  - S 2 ) -  1 (HAB + H~A) ,  (5.8) 

7 The total polarization energy may be defined as the energy lowering in going from zero-order 
group functions over to SCF-group functions. 
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where 
* , ( 5 . 9 )  H AB = ~ Cu H~ C~ HBA = HAB t 

are the off-diagonal terms of H representing the interaction between the polarized 
groups A and B. Arising from typical cross-terms in the Hamiltonian this contri- 
bution depends strongly on the overlap between the charge clouds belonging 
to different groups. Insofar as its sign is concerned we see that it will describe 
repulsion or attraction depending on the sign of the intergroup overlap S and 
the cross-terms of H. When spherical orbitals are used to construct localized 
electron groups, (HA~+ H BA) will be negative, S will be positive, and this term 
will be positive, describing repulsion between the two groups (e.g. two He atoms 
interacting in their ground state). But if strongly directed AO's (e.g. p-functions 
in the atomic hybrids)are embodied into the localized orbitals, (HAB+ H BA) 
and S may be of both signs as well, and this term will describe repulsion or at- 
traction depending on the relative orientation of the two groups. 

According to Eq. (3.18) we obtain a partition of AE (~) into interatomic 
components 

AE (1) = ~ E ~ ,  (5.10) 
# ,V  

where 
- -  N i 

(5.11) 

represents the contribution to A E (1) arising from ¢,  (an hybrid atomic orbital 
belonging to A) and ¢~ (an hybrid atomic orbital belonging to B). 

The interaction between pairs of atomic orbitals belonging to different electron 
groups is thus seen to depend on the whole system through the bond-orders/3.  

6. Concluding Remarks 

The simple theory outlined in the preceding Sections shows that for neutral 
systems the main body of the short-range interaction takes place through the 
overlap arising between nonorthogonal electron groups. For closed-shell fragments 
the consequent distortion of the electron density generally results in a decrease 
of charge in the overlap region and in an increase of charge in the region of the 
component groups. These conclusions are similar to those obtained by Salem [-14], 
who investigated short-range forces on the basis of the Hellmann-Feynman 
theorem. 

It is of interest to notice that the density of the composite system A + B, 
Eq. (2.12), may be also written in the alternative way 

P(1; 1)=Po(1; 1)+AP(1; 1), (6.1) 

where 
Po(1; 1) = 2(I~AI 2 + I~BI 2) (6.2) 

is the density of undistorted groups (except for the small second-order polarization), 
and 

A P(1 ; 1) = 2(1 - $2) -1 [S2(I~AI 2 + I~BI 2) - S(q~A ~ B* + ~B~A.)] (6.3) 
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is that part of the actual density which describes the distortion in the electron 
distribution. Since the integral of the distortion density A P(1 ; 1) over the whole 
electron space vanishes, 

A P(1; 1) d vl = 0, (6.4) 

we see that the largest contribution to the penetration energy, A E ~1), originates 
from a density which, although giving point-by-point contributions to the electron 
population, does not give contribution to the overall negative charge. This is 
because the same amount of normalized charge weights different parts of the 
Hamiltonian, diagonal ("unperturbed") terms occurring in Eq. (5.6) and off- 
diagonal ("perturbations") terms in Eq. (5.8). The polarization of the localized 
orbitals introduced in a self-consistent way in Section 4 does improve the first 
approximation to the interaction energy by allowing the component charge 
clouds to rearrange themselves so as to minimize the total energy and reduce 
the effective interaction. 

Since no expansion whatsoever has been involved in our previous discussion, 
the theory is not strictly limited to regions of small orbital overlap, being 
appropriate in all cases where it is meaningful to distinguish between separate 
electron pairs. It is suitable, for instance, to study geminal as well as vicinal 
interactions in polyatomic molecules. Interactions between 9eminal pairs, namely 
those electron pairs which are directly connected, are of interest in understanding 
molecular vibrations, while the interactions between electron pairs not directly 
connected (vicinal pairs) should be responsible for most of the conformational 
properties of polyatomic molecules. In this last case the orientation dependence of 
the short-range interaction through the overlap between different vicinal groups is 
expected to play a fundamental role. 

Within the given assumptions, the theory developed here does not depend on 
the explicit form of the matrix elements of the Hamiltonian, so that different 
levels of approximation are possible as well, which should allow a certain degree 
of flexibility in dealing with the applications. 
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